Tuesday, 30 December 2014

How to scrape address from Google Maps

If you want to build a new online directory based website and want it to be popular with latest web contents, then you need the help of web scraping services from iWeb scraping. If you want to scrape address from maps.google.com, there is a specialized web scraping tool developed by iWeb scraping which can do the job for you. There are plenty of benefits with web scraping which includes market research, gathering customer information, managing product catalogs, compare prices, gather real estate data, gather job posting information etc. Web scraping technology is very popular nowadays and it saves lot of time and effort involved in manual extraction of data from websites.

The web scraping tools developed iWeb Scraping is very user-friendly and can extract specific information from targeted websites. It converts data from HTML web pages to useful formats like Excel spread sheets or Access database. Whatever web scraping requirements you have, you can contact iWeb Scraping as they have more than 3.5 years of web data extraction experience and offer the best prices in the industry. Also their services are available in 24x7 basis and free pilot projects will be done based on request.

Companies which require specific web data and look for an application which can automate the process and export the HTML data in structured format could benefit greatly from web scraping applications of iWeb scraping. You can easily extract data from multiple target websites, parse and re-assemble the information in HTML format to database or spread sheets as you wish. The application has simple point-and-click user-interface and any beginner can use it scrape address from Google Maps. If you want to gather address of people in particular region from Google maps, you can do it with help of web scraping application developed by iWebscraping.

Web Scraping is a technology that able to digest target website databases that are visible only as HTML web pages, and create a local, identical replica of those databases as a information or result. With our web scraping & web data extraction service we can capture web pages, then pin-point specific pieces of data/information you'd like to extract from web pages. What is needed in this process is much more than a Website crawler and set of Website wrappers. The time required to do web data extraction goes down in comparison to manually data copying and pasting job.

Source:http://www.articlesbase.com/information-technology-articles/how-to-scrape-address-from-google-maps-4683906.html

Wednesday, 24 December 2014

Limitations and Challenges in Effective Web Data Mining

Web data mining and data collection is critical process for many business and market research firms today. Conventional Web data mining techniques involve search engines like Google, Yahoo, AOL, etc and keyword, directory and topic-based searches. Since the Web's existing structure cannot provide high-quality, definite and intelligent information, systematic web data mining may help you get desired business intelligence and relevant data.

Factors that affect the effectiveness of keyword-based searches include:

• Use of general or broad keywords on search engines result in millions of web pages, many of which are totally irrelevant.

• Similar or multi-variant keyword semantics my return ambiguous results. For an instant word panther could be an animal, sports accessory or movie name.

• It is quite possible that you may miss many highly relevant web pages that do not directly include the searched keyword.

The most important factor that prohibits deep web access is the effectiveness of search engine crawlers. Modern search engine crawlers or bot can not access the entire web due to bandwidth limitations. There are thousands of internet databases that can offer high-quality, editor scanned and well-maintained information, but are not accessed by the crawlers.

Almost all search engines have limited options for keyword query combination. For example Google and Yahoo provide option like phrase match or exact match to limit search results. It demands for more efforts and time to get most relevant information. Since human behavior and choices change over time, a web page needs to be updated more frequently to reflect these trends. Also, there is limited space for multi-dimensional web data mining since existing information search rely heavily on keyword-based indices, not the real data.

Above mentioned limitations and challenges have resulted in a quest for efficiently and effectively discover and use Web resources. Send us any of your queries regarding Web Data mining processes to explore the topic in more detail.

Source: http://ezinearticles.com/?Limitations-and-Challenges-in-Effective-Web-Data-Mining&id=5012994

Monday, 22 December 2014

GScholarXScraper: Hacking the GScholarScraper function with XPath

Kay Cichini recently wrote a word-cloud R function called GScholarScraper on his blog which when given a search string will scrape the associated search results returned by Google Scholar, across pages, and then produce a word-cloud visualisation.

This was of interest to me because around the same time I posted an independent Google Scholar scraper function  get_google_scholar_df() which does a similar job of the scraping part of Kay’s function using XPath (whereas he had used Regular Expressions). My function worked as follows: when given a Google Scholar URL it will extract as much information as it can from each search result on the URL webpage  into different columns of a dataframe structure.

In the comments of his blog post I figured it’d be fun to hack his function to provide an XPath alternative, GScholarXScraper. Essensially it’s still the same function he wrote and therefore full credit should go to Kay on this one as he fully deserves it – I certainly had no previous idea how to make a word cloud, plus I hadn’t used the tm package in ages (to the point where I’d forgotten most of it!). The main changes I made were as follows:

    Restructure internal code of GScholarScraper into a series of local functions which each do a seperate job (this made it easier for me to hack because I understood what was doing what and why).

    As far as possible, strip out Regular Expressions and replace with XPath alternatives (made possible via the XML package). Hence the change of name to GScholarXScraper. Basically, apart from a little messing about with the generation of the URLs I just copied over my get_google_scholar_df() function and removed the Regular Expression alternatives. I’m not saying one is better than the other but f0r me personally, I find XPath shorter and quicker to code but either is a good approach for web scraping like this (note to self: I really need to lean more about regular expressions!) :)

•    Vectorise a few of the loops I saw (it surprises me how second nature this has become to me – I used to find the *apply family of functions rather confusing but thankfully not so much any more!).
•    Make use of getURL from the RCurl package (I was getting some mutibyte string problems originally when using readLines but this approach automatically fixed it for me).
•    Add option to make a word-cloud from either the “title” or the “description” fields of the Google Scholar search results
•    Added steaming via the Rstem package because I couldn’t get the Snowball package to install with my version of java. This was important to me because I was getting word clouds with variations of the same word on it e.g. “game”, “games”, “gaming”.
•    Forced use of URLencode() on generation of URLs to automatically avoid problems with search terms like “Baldur’s Gate” which would otherwise fail.

I think that’s pretty much everything I added. Anyway, here’s how it works (link to full code at end of post):

</pre>
<div id="LC198"># #EXAMPLE 1: Display word cloud based on the title field of each Google Scholar search result returned</div>
<div id="LC199"># GScholarXScraper(search.str = "Baldur's Gate", field = "title", write.table = FALSE, stem = TRUE)</div>
<div id="LC200">#</div>
<div id="LC201"># # word freq</div>
<div id="LC202"># # game game 71</div>
<div id="LC203"># # comput comput 22</div>
<div id="LC204"># # video video 13</div>
<div id="LC205"># # learn learn 11</div>
<div id="LC206"># # [TRUNC...]</div>
<div id="LC207"># #</div>
<div id="LC208"># #</div>
<div id="LC209"># # Number of titles submitted = 210</div>
<div id="LC210"># #</div>
<div id="LC211"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC212"># #</div>
<div id="LC213"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>

<pre>

// image

I think that’s kind of cool and corresponds to what I would expect for a search about the legendary Baldur’s Gate computer role playing game :)  The following is produced if we look at the ‘description’ filed instead of the ‘title’ field:

</pre>

<div id="LC215"># # EXAMPLE 2: Display word cloud based on the description field of each Google Scholar search result returned</div>
<div id="LC216">GScholarXScraper(search.str = "Baldur's Gate", field = "description", write.table = FALSE, stem = TRUE)</div>
<div id="LC217">#</div>
<div id="LC218"># # word freq</div>
<div id="LC219"># # page page 147</div>
<div id="LC220"># # gate gate 132</div>
<div id="LC221"># # game game 130</div>
<div id="LC222"># # baldur baldur 129</div>
<div id="LC223"># # roleplay roleplay 21</div>
<div id="LC224"># # [TRUNC...]</div>
<div id="LC225"># #</div>
<div id="LC226"># # Number of titles submitted = 210</div>
<div id="LC227"># #</div>
<div id="LC228"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC229"># #</div>
<div id="LC230"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>
<pre>

//image

Not bad. I could see myself using the text mining and word cloud functionality with other projects I’ve been playing with such as Facebook, Google+, Yahoo search pages, Google search pages, Bing search pages… could be fun!

Many thanks again to Kay for making his code publicly available so that I could play with it and improve my programming skill set.

Code:

Full code for GScholarXScraper can be found here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/GScholarXScraper/GScholarXScraper

Original GSchloarScraper code is here: https://docs.google.com/document/d/1w_7niLqTUT0hmLxMfPEB7pGiA6MXoZBy6qPsKsEe_O0/edit?hl=en_US

Full code for just the XPath scraping function is here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/googleScholarXScraper/googleScholarXScraper.R

Source:http://www.r-bloggers.com/gscholarxscraper-hacking-the-gscholarscraper-function-with-xpath/

Thursday, 18 December 2014

Data Extraction - A Guideline to Use Scrapping Tools Effectively

So many people around the world do not have much knowledge about these scrapping tools. In their views, mining means extracting resources from the earth. In these internet technology days, the new mined resource is data. There are so many data mining software tools are available in the internet to extract specific data from the web. Every company in the world has been dealing with tons of data, managing and converting this data into a useful form is a real hectic work for them. If this right information is not available at the right time a company will lose valuable time to making strategic decisions on this accurate information.

This type of situation will break opportunities in the present competitive market. However, in these situations, the data extraction and data mining tools will help you to take the strategic decisions in right time to reach your goals in this competitive business. There are so many advantages with these tools that you can store customer information in a sequential manner, you can know the operations of your competitors, and also you can figure out your company performance. And it is a critical job to every company to have this information at fingertips when they need this information.

To survive in this competitive business world, this data extraction and data mining are critical in operations of the company. There is a powerful tool called Website scraper used in online digital mining. With this toll, you can filter the data in internet and retrieves the information for specific needs. This scrapping tool is used in various fields and types are numerous. Research, surveillance, and the harvesting of direct marketing leads is just a few ways the website scraper assists professionals in the workplace.

Screen scrapping tool is another tool which useful to extract the data from the web. This is much helpful when you work on the internet to mine data to your local hard disks. It provides a graphical interface allowing you to designate Universal Resource Locator, data elements to be extracted, and scripting logic to traverse pages and work with mined data. You can use this tool as periodical intervals. By using this tool, you can download the database in internet to you spread sheets. The important one in scrapping tools is Data mining software, it will extract the large amount of information from the web, and it will compare that date into a useful format. This tool is used in various sectors of business, especially, for those who are creating leads, budget establishing seeing the competitors charges and analysis the trends in online. With this tool, the information is gathered and immediately uses for your business needs.

Another best scrapping tool is e mailing scrapping tool, this tool crawls the public email addresses from various web sites. You can easily from a large mailing list with this tool. You can use these mailing lists to promote your product through online and proposals sending an offer for related business and many more to do. With this toll, you can find the targeted customers towards your product or potential business parents. This will allows you to expand your business in the online market.

There are so many well established and esteemed organizations are providing these features free of cost as the trial offer to customers. If you want permanent services, you need to pay nominal fees. You can download these services from their valuable web sites also.

Source: http://ezinearticles.com/?Data-Extraction---A-Guideline-to-Use-Scrapping-Tools-Effectively&id=3600918

Wednesday, 17 December 2014

Online Data Entry and Data Mining Services

Data entry job involves transcribing a particular type of data into some other form. It can be either online or offline. The input data may include printed documents like Application forms, survey forms, registration forms, handwritten documents etc.

Data entry process is an inevitable part of the job to any organization. One way or other each organization demands data entry. Data entry skills vary depends upon the nature of the job requirement, in some cases data to be entered from a hard copy formats and in some other cases data to be entered directly into a web portal. Online data entry job generally requires the data to be entered in to any online data base.

For a super market, data associate might be required to enter the goods which have sold in a particular day and the new goods received in a particular day to maintain the stock well in order. Also, by doing this the concerned authorities will get an idea about the sale particulars of each commodity as they requires. In another example, an office the account executive might be required to input the day to day expenses in to the online accounting database in order to keep the account well in order.

The aim of the data mining process is to collect the information from reliable online sources as per the requirement of the customer and convert it to a structured format for the further use. The major source of data mining is any of the internet search engine like Google, Yahoo, Bing, AOL, MSN etc. Many search engines such as Google and Bing provide customized results based on the user's activity history. Based on our keyword search, the search engine lists the details of the websites from where we can gather the details as per our requirement.

Collect the data from the online sources such as Company Name, Contact Person, Profile of the Company, Contact Phone Number of Email ID Etc. are doing for the marketing activities. Once the data is gathered from the online sources into a structured format, the marketing authorities will start their marketing promotions by calling or emailing the concerned persons, which may result to create a new customer. So basically data mining is playing a vital role in today's business expansions. By outsourcing the data entry and its related works, you can save the cost that would be incurred in setting up the necessary infrastructure and employee cost.

Source:http://ezinearticles.com/?Online-Data-Entry-and-Data-Mining-Services&id=7713395

Monday, 15 December 2014

Git workflow for Scrapy projects

Our customers often ask us what’s the best workflow for working with Scrapy projects. A popular approach we have seen and used in the past is to split the spiders folder (typically project/spiders) into two folders: project/spiders_prod and project/spiders_dev, and use the SPIDER_MODULES setting to control which spiders are loaded on each environment. This works reasonably well, until you have to make changes to common code used by many spiders (ie. code outside the spiders folder), for example common base spiders.

Nowadays, DVCS (in particular, git) have become more popular and people are quite used to branching, so we recommend using a simple git workflow (similar to GitHub flow) where you branch for every change you make. You keep all changes in a branch while they’re being tested and finally merge to master when they’re finished. This means that master branch is always stable and contains only “production-ready” spiders.

If you are using our Scrapy Cloud platform, you can have 2 projects (myproject-dev, myproject-prod) and use myproject-dev to test the changes in your branch.  scrapy deploy in Scrapy 0.17 now adds the branch name to the version name (when using version=GIT or version=HG), so you can see which branch you are going to run directly on the panel. This is particularly useful with large teams working on a single Scrapy project, to avoid stepping into each other when making changes to common code.

Here is a concrete example to illustrate how this workflow works:y

•    the developer decides to work on issue 123 (could be a new spider or fixes to an existing spider)
•    the developer creates a new branch to work on the issue
•    git checkout -b issue123
•    the developer finishes working on the code and deploys to the panel (this assumes scrapy.cfg is configured with a deploy target, and using version=GIT – see here for more information)
•    scrapy deploy dev
•    the developer goes into the panel and runs the spider, where he’ll see the branch name (issue123) that will be run
•    the developer checks the scraped data looks fine through the item browser in the panel
•    whenever issues are found, the developer makes more fixes (always working on the same branch) and deploys new versions
•    once all issues are fixed, the developer merges the branch and deploys to production project
•    git checkout master
•    git merge issue123
•    git pull # make sure to pull latest code before deploying
•    scrapy deploy prod

We recommend you keep your common spiders well-tested and use Spider Contracts extensively to test your final spiders. Otherwise experience tell us that base spiders end up being copied (instead of reused) out of fear of breaking old spiders that depend on them, thus turning their maintenance into a nightmare.

Source:http://blog.scrapinghub.com/2013/03/06/git-workflow-scrapy-projects/

Saturday, 13 December 2014

Handling exceptions in scrapers

When requesting and parsing data from a source with unknown properties and random behavior (in other words, scraping), I expect all kinds of bizarrities to occur. Managing exceptions is particularly helpful in such cases.

Here is some ways that an exception might be raised.
[][0] #The list has no zeroth element, so this raises an IndexError
{}['foo'] #The dictionary has no foo element, so this raises a KeyError

Catching the exception is sometimes cleaner than preventing it from happening in the first place. Here are some examples handling bizarre exceptions in scrapers.

Example 1: Inconsistant date formats

Let’s say we’re parsing dates.
import datetime
This doesn’t raise an error.
datetime.datetime.strptime('2012-04-19', '%Y-%m-%d')
But this does.
datetime.datetime.strptime('April 19, 2012', '%Y-%m-%d')

It raises a ValueError because the date formats don’t match. So what do we do if we’re scraping a data source with multiple date formats?

Ignoring unexpected date formats

A simple thing is to ignore the date formats that we didn’t expect.

import lxml.html
import datetime
def parse_date1(source):
    rawdate = lxml.html.fromstring(source).get_element_by_id('date').text
    try:
         cleandate = datetime.datetime.strptime(rawdate, '%Y-%m-%d')
    except ValueError:
         cleandate = None
    return cleandate

print parse_date1('<div id="date">2012-04-19</div>')

If we make a clean date column in a database and put this in there, we’ll have some rows with dates and some rows with nulls. If there are only a few nulls, we might just parse those by hand.

Trying multiple date formats

Maybe we have determined that this particular data source uses three different date formats. We can try all three.

import lxml.html
import datetime

def parse_date2(source):

    rawdate = lxml.html.fromstring(source).get_element_by_id('date').text

    for date_format in ['%Y-%m-%d', '%B %d, %Y', '%d %B, %Y']:

        try:
             cleandate = datetime.datetime.strptime(rawdate, date_format)
             return cleandate
        except ValueError:
             pass
    return None

print parse_date2('<div id="date">19 April, 2012</div>')

This loops through three different date formats and returns the first one that doesn’t raise the error.

Example 2: Unreliable HTTP connection

If you’re scraping an unreliable website or you are behind an unreliable internet connection, you may sometimes get HTTPErrors or URLErrors for valid URLs. Trying again later might help.

import urllib2
def load(url):
    retries = 3
    for i in range(retries):
        try:
            handle = urllib2.urlopen(url)
            return handle.read()
        except urllib2.URLError:
            if i + 1 == retries:
                raise
            else:
                time.sleep(42)
    # never get here

print load('http://thomaslevine.com')

This function tries to download the page thee times. On the first two fails, it waits 42 seconds and tries again. On the third failure, it raises the error. On a success, it returs the content of the page.

Example 3: Logging errors rather than raising them

For more complicated parses, you might find loads of errors popping up in weird places, so you might want to go through all of the documents before deciding which to fix first or whether to do some of them manually.

import scraperwiki
for document_name in document_names:
    try:
        parse_document(document_name)
    except Exception as e:
        scraperwiki.sqlite.save([], {
            'documentName': document_name,
            'exceptionType': str(type(e)),
            'exceptionMessage': str(e)
        }, 'errors')

This catches any exception raised by a particular document, stores it in the database and then continues with the next document. Looking at the database afterwards, you might notice some trends in the errors that you can easily fix and some others where you might hard-code the correct parse.

Example 4: Exiting gracefully

When I’m scraping over 9000 pages and my script fails on page 8765, I like to be able to resume where I left off. I can often figure out where I left off based on the previous row that I saved to a database or file, but sometimes I can’t, particularly when I don’t have a unique index.


for bar in bars:
    try:
        foo(bar)
    except:
        print('Failure at bar = "%s"' % bar)
        raise

This will tell me which bar I left off on. It’s fancier if I save the information to the database, so here is how I might do that with ScraperWiki.

import scraperwiki
resume_index = scraperwiki.sqlite.get_var('resume_index', 0)
for i, bar in enumerate(bars[resume_index:]):
    try:
        foo(bar)
    except:
        scraperwiki.sqlite.save_var('resume_index', i)
        raise
scraperwiki.sqlite.save_var('resume_index', 0)

ScraperWiki has a limit on CPU time, so an error that often concerns me is the scraperwiki.CPUTimeExceededError. This error is raised after the script has used 80 seconds of CPU time; if you catch the exception, you have two CPU seconds to clean up. You might want to handle this error differently from other errors.

import scraperwiki
resume_index = scraperwiki.sqlite.get_var('resume_index', 0)
for i, bar in enumerate(bars[resume_index:]):
    try:
        foo(bar)
    except scraperwiki.CPUTimeExceededError:
        scraperwiki.sqlite.save_var('resume_index', i)
    except Exception as e:
        scraperwiki.sqlite.save_var('resume_index', i)
        scraperwiki.sqlite.save([], {
            'bar': bar,
            'exceptionType': str(type(e)),
            'exceptionMessage': str(e)
        }, 'errors')
scraperwiki.sqlite.save_var('resume_index', 0)

tl;dr

Expect exceptions to occur when you are scraping a randomly unreliable website with randomly inconsistent content, and consider handling them in ways that allow the script to keep running when one document of interest is bizarrely formatted or not available.

Source: https://blog.scraperwiki.com/2012/05/handling-exceptions-in-scrapers/

Thursday, 4 December 2014

Web scraping tutorial

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Now that we have got all the legalities out of the way, lets start with the examples.

1. Installing simplehtmldom.

Simplehtmldom is a PHP library that facilitates the process of creating web scrapers. It is a HTML DOM parser written in PHP5 that let you manipulate HTML in a quick and easy way. It is a wonderful library that does away with the messy details of regular expressions and uses CSS selector style DOM access like those found in jQuery.

First download the library from sourceforge.  Unzip the library in you PHP includes directory or a directory where you will be testing the code.

Writing our first scraper.

Now that we are ready with the tools, lets write our first web scraper. For our initial idea let us see how to grab the sponsored links section from a google search page.

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Source: http://www.codediesel.com/php/web-scraping-in-php-tutorial/