Thursday, 30 April 2015

Lawyers & Attorneys Website Data Scraping Services

There are so many instances where one end’s up needing information from lawyers or bar associations. However, if you approach them directly or look for other ways to get information it might either be difficult or you might not get the information you are looking for. Thus, the best way to go about the scraping lawyer data.

Scraping lawyer data allow you to get information from various attorney websites, bar association websites, or other related websites. Using web scraping tools for getting such information makes it much easier to get all the relevant and important information without actually having to worry about the same.

If you wish to scrape data from lawyer, you are entitled to information such as lawyer name, firm names, address, contact details, history about the lawyers, educational qualifications, the bar association they are part of and much more.

Scraping lawyer data ensure that you also have images of the lawyer you are concentrating on. The result of scrape data form lawyer can be obtained in any format the user wants such as csv, excel, MySql etc. Scraping lawyer data also ensures that none of the information provided are repetitive or redundant.

If you are in need of information regarding any lawyer such as their contact details, address etc. it could end up being a huge and difficult task to get it manually or physically. Thus, taking off the help of scraping tools would ensure that you get all the needed information without actually having to bother about anything at all. The presence of lots of attorney websites and the fact that more and more lawyers are moving to the internet makes getting information easy with the help of some great tools. Scraping data is a very useful and handy method in which one can get all the required and relevant information and that too in a very easy to read format, which makes the method even worthier.

There are quite a few tools or services that you can take help of to get lawyers data scraped. Most of these services also provide with a sample demo and that free of cost. From the sample one can decide if they wish to continue with the services or try some other services. Thus, if you want any information from attorney websites or information about any lawyers, data scraping is a great way to get the same.

Source: https://3idatascraping.wordpress.com/2014/03/18/lawyers-attorneys-website-data-scraping-services/

Saturday, 25 April 2015

I Don’t Need No Stinking API: Web Scraping For Fun and Profit

If you’ve ever needed to pull data from a third party website, chances are you started by checking to see if they had an official API. But did you know that there’s a source of structured data that virtually every website on the internet supports automatically, by default?

scraper toolThat’s right, we’re talking about pulling our data straight out of HTML — otherwise known as web scraping. Here’s why web scraping is awesome:

Any content that can be viewed on a webpage can be scraped. Period.

If a website provides a way for a visitor’s browser to download content and render that content in a structured way, then almost by definition, that content can be accessed programmatically. In this article, I’ll show you how.

Over the past few years, I’ve scraped dozens of websites — from music blogs and fashion retailers to the USPTO and undocumented JSON endpoints I found by inspecting network traffic in my browser.

There are some tricks that site owners will use to thwart this type of access — which we’ll dive into later — but they almost all have simple work-arounds.

Why You Should Scrape

But first we’ll start with some great reasons why you should consider web scraping first, before you start looking for APIs or RSS feeds or other, more traditional forms of structured data.

Websites are More Important Than APIs

The biggest one is that site owners generally care way more about maintaining their public-facing visitor website than they do about their structured data feeds.

We’ve seen it very publicly with Twitter clamping down on their developer ecosystem, and I’ve seen it multiple times in my projects where APIs change or feeds move without warning.

Sometimes it’s deliberate, but most of the time these sorts of problems happen because no one at the organization really cares or maintains the structured data. If it goes offline or gets horribly mangled, no one really notices.

Whereas if the website goes down or is having issues, that’s a more of an in-your-face, drop-everything-until-this-is-fixed kind of problem, and gets dealt with quickly.

No Rate-Limiting

Another thing to think about is that the concept of rate-limiting is virtually non-existent for public websites.

Aside from the occasional captchas on sign up pages, most businesses generally don’t build a lot of defenses against automated access. I’ve scraped a single site for over 4 hours at a time and not seen any issues.

Unless you’re making concurrent requests, you probably won’t be viewed as a DDOS attack, you’ll just show up as a super-avid visitor in the logs, in case anyone’s looking.

Anonymous Access

There are also fewer ways for the website’s administrators to track your behavior, which can be useful if you want gather data more privately.

With APIs, you often have to register to get a key and then send along that key with every request. But with simple HTTP requests, you’re basically anonymous besides your IP address and cookies, which can be easily spoofed.

The Data’s Already in Your Face

Web scraping is also universally available, as I mentioned earlier. You don’t have to wait for a site to open up an API or even contact anyone at the organization. Just spend some time browsing the site until you find the data you need and figure out some basic access patterns — which we’ll talk about next.

Let’s Get to Scraping

So you’ve decided you want to dive in and start grabbing data like a true hacker. Awesome.

Just like reading API docs, it takes a bit of work up front to figure out how the data is structured and how you can access it. Unlike APIs however, there’s really no documentation so you have to be a little clever about it.

I’ll share some of the tips I’ve learned along the way.

Fetching the Data

So the first thing you’re going to need to do is fetch the data. You’ll need to start by finding your “endpoints” — the URL or URLs that return the data you need.

If you know you need your information organized in a certain way — or only need a specific subset of it — you can browse through the site using their navigation. Pay attention to the URLs and how they change as you click between sections and drill down into sub-sections.

The other option for getting started is to go straight to the site’s search functionality. Try typing in a few different terms and again, pay attention to the URL and how it changes depending on what you search for. You’ll probably see a GET parameter like q= that always changes based on you search term.

Try removing other unnecessary GET parameters from the URL, until you’re left with only the ones you need to load your data. Make sure that there’s always a beginning ? to start the query string and a & between each key/value pair.

Dealing with Pagination

At this point, you should be starting to see the data you want access to, but there’s usually some sort of pagination issue keeping you from seeing all of it at once. Most regular APIs do this as well, to keep single requests from slamming the database.

Usually, clicking to page 2 adds some sort of offset= parameter to the URL, which is usually either the page number or else the number of items displayed on the page. Try changing this to some really high number and see what response you get when you “fall off the end” of the data.

With this information, you can now iterate over every page of results, incrementing the offset parameter as necessary, until you hit that “end of data” condition.

The other thing you can try doing is changing the “Display X Per Page” which most pagination UIs now have. Again, look for a new GET parameter to be appended to the URL which indicates how many items are on the page.

Try setting this to some arbitrarily large number to see if the server will return all the information you need in a single request. Sometimes there’ll be some limits enforced server-side that you can’t get around by tampering with this, but it’s still worth a shot since it can cut down on the number of pages you must paginate through to get all the data you need.

AJAX Isn’t That Bad!

Sometimes people see web pages with URL fragments # and AJAX content loading and think a site can’t be scraped. On the contrary! If a site is using AJAX to load the data, that probably makes it even easier to pull the information you need.

The AJAX response is probably coming back in some nicely-structured way (probably JSON!) in order to be rendered on the page with Javscript.

All you have to do is pull up the network tab in Web Inspector or Firebug and look through the XHR requests for the ones that seem to be pulling in your data.

Once you find it, you can leave the crufty HTML behind and focus instead on this endpoint, which is essentially an undocumented API.

(Un)structured Data?

Now that you’ve figured out how to get the data you need from the server, the somewhat tricky part is getting the data you need out of the page’s markup.

Use CSS Hooks

In my experience, this is usually straightforward since most web designers litter the markup with tons of classes and ids to provide hooks for their CSS.

You can piggyback on these to jump to the parts of the markup that contain the data you need.

Just right click on a section of information you need and pull up the Web Inspector or Firebug to look at it. Zoom up and down through the DOM tree until you find the outermost <div> around the item you want.

This <div> should be the outer wrapper around a single item you want access to. It probably has some class attribute which you can use to easily pull out all of the other wrapper elements on the page. You can then iterate over these just as you would iterate over the items returned by an API response.

A note here though: the DOM tree that is presented by the inspector isn’t always the same as the DOM tree represented by the HTML sent back by the website. It’s possible that the DOM you see in the inspector has been modified by Javascript — or sometime even the browser, if it’s in quirks mode.

Once you find the right node in the DOM tree, you should always view the source of the page (“right click” > “View Source”) to make sure the elements you need are actually showing up in the raw HTML.

This issue has caused me a number of head-scratchers.

Get a Good HTML Parsing Library

It is probably a horrible idea to try parsing the HTML of the page as a long string (although there are times I’ve needed to fall back on that). Spend some time doing research for a good HTML parsing library in your language of choice.

Most of the code I write is in Python, and I love BeautifulSoup for its error handling and super-simple API. I also love its motto:

    You didn’t write that awful page. You’re just trying to get some data out of it. Beautiful Soup is here to help. :)

You’re going to have a bad time if you try to use an XML parser since most websites out there don’t actually validate as properly formed XML (sorry XHTML!) and will give you a ton of errors.

A good library will read in the HTML that you pull in using some HTTP library (hat tip to the Requests library if you’re writing Python) and turn it into an object that you can traverse and iterate over to your heart’s content, similar to a JSON object.

Some Traps To Know About

I should mention that some websites explicitly prohibit the use of automated scraping, so it’s a good idea to read your target site’s Terms of Use to see if you’re going to make anyone upset by scraping.

For two-thirds of the website I’ve scraped, the above steps are all you need. Just fire off a request to your “endpoint” and parse the returned data.

But sometimes, you’ll find that the response you get when scraping isn’t what you saw when you visited the site yourself.

When In Doubt, Spoof Headers

Some websites require that your User Agent string is set to something they allow, or you need to set certain cookies or other headers in order to get a proper response.

Depending on the HTTP library you’re using to make requests, this is usually pretty straightforward. I just browse the site in my web browser and then grab all of the headers that my browser is automatically sending. Then I put those in a dictionary and send them along with my request.

Note that this might mean grabbing some login or other session cookie, which might identify you and make your scraping less anonymous. It’s up to you how serious of a risk that is.

Content Behind A Login

Sometimes you might need to create an account and login to access the information you need. If you have a good HTTP library that handles logins and automatically sending session cookies (did I mention how awesome Requests is?), then you just need your scraper login before it gets to work.

Note that this obviously makes you totally non-anonymous to the third party website so all of your scraping behavior is probably pretty easy to trace back to you if anyone on their side cared to look.

Rate Limiting

I’ve never actually run into this issue myself, although I did have to plan for it one time. I was using a web service that had a strict rate limit that I knew I’d exceed fairly quickly.

Since the third party service conducted rate-limiting based on IP address (stated in their docs), my solution was to put the code that hit their service into some client-side Javascript, and then send the results back to my server from each of the clients.

This way, the requests would appear to come from thousands of different places, since each client would presumably have their own unique IP address, and none of them would individually be going over the rate limit.

Depending on your application, this could work for you.

Poorly Formed Markup

Sadly, this is the one condition that there really is no cure for. If the markup doesn’t come close to validating, then the site is not only keeping you out, but also serving a degraded browsing experience to all of their visitors.

It’s worth digging into your HTML parsing library to see if there’s any setting for error tolerance. Sometimes this can help.

If not, you can always try falling back on treating the entire HTML document as a long string and do all of your parsing as string splitting or — God forbid — a giant regex.

Source: https://blog.hartleybrody.com/web-scraping/

Saturday, 18 April 2015

Data Mining and Predictive Analysis

Data collection and curing is the core foundation of most businesses. Database building thus is an important function and activity where enterprises invest heavily. With information now available on the Internet and easily obtained, it raises the importance of having professionals who crawl data and offer web scraping services.

Once the data is accessed, though, it is important to filter out the relevant data based on the business need. Although Many DaaS provider convert the unstructured web data into meaningful structured data it is recommended to be internally equipped to use the data to its maximum.

This understanding has given rise to the field of Data Mining. Data Mining is designed to explore large amounts of data in search of consistent patterns and connections between the variables and validate the findings by applying the detected patterns to the new sets of the data. Once these connections are established and understood, the end goal is to be able to predict the possible outcomes using predictive analysis techniques.

Together, both Data Mining and predictive analysis aid in making marketing campaigns more efficient. While predictive analysis helps simulate and understand what may happen, data mining helps identify exciting data patterns and connections.

The process of Data Mining and Predictive analysis consists of 3 steps

Exploration


Once a database is compiled, it needs to be cleaned, analysed and potential connections need to be built. This process involves filtering the relevant data and identifying the possible predictors. Data Exploration also sets a premise for preliminary feature selection to manage number of variables. This data is then prepared for statistical analysis using a wide variety of graphical and statistical parameters. This helps identify the most relevant variables and setups the predictive models to be built.

Data mining process

Validation


Next comes building various models and choosing the most relevant ones. This decision is based on their possible predictive performance and of being able to produce stable results across all the samples. Simple as it sounds, to truly get the results, all possible models must be treated with data to simulate scenarios. The model with most stable statistical feature is validated.

Application

Once the relevant models are finalised, the same is applied to new data to understand and predict the estimated outcomes. Application of data models is an ongoing and complex process since every new dataset needs to be configured in the model.

Data Mining and predictive analysis essentially involves blending statistical methodology where the traditional statistics machine learning and complex algorithms. This greatly increases the need for efficient and skilled data handlers. This could include data analysts and scientists.

See how you can become data scientist here:

Data crunchers use data mining and predictive analysis actively to get an edge in the big data management. Database platforms like Hadoop assist in database management and large-scale distribution. But the costs involved in setting up data centres and big data management capacity are high. Budgets allocated within the enterprise are more project-focussed and analytics budgets are usually limited. Quite often, big data and analytics project fail to launch because of this problem! The other problem is that to run effective predictive models, data requires to be handled by scientists with experience. Finding and setting together a technologically-advanced team is a daunting task most enterprises face outside the tech domain.

Predictive Analysis model

A predictive analysis model is essentially predicting the all possible outcomes from a given set of data. Here are a few steps that can be taken to help build and identify the “ideal” predictive analysis model. These steps more or less mirror the usual statistical methodology of building a test model.

Defining an objective

This is the first and a critical step. Unless the objective is identified and defined there can be no concrete results since there wouldn’t be clarity to compare the final outcome to the expected result. It also helps understand the scope of the project.

Preparing the data

This is more to do with data mining. Historic data used for training the model is scattered across multiple platforms and sources. To compound the problem, data can be unstructured with possible duplicate accounts and missing values! Data quality determines the quality of the model, and thus it becomes imperative that data is healthy and relevant.

Data Sampling

Once mined, Data is essentially split into 2 parts. One set is for training that is used to build the model and the second is the ‘test’ set that is used to verify the accuracy of the final output. This also helps identify and filter the noise component.

Model Building

Sampling cam equally result in a single algorithm or parallel & connected algorithms. In such a case the data goes through multiple testing and a decision is based on the final output.

Execution

Once a model gets finalised, the other teams in the organization need to be involved to build a deployable model and understand its impact on the overall business.

The possibilities with Data mining & Predictive analysis are huge. It also gives a huge room for learning and experimenting. There are several tools available in the industry to aid through all the steps of data mining and predictive analysis. The combination of human expertise and intellect along with the help of the available tools and the overall cooperation within the multiple channels within the organization essentially ensures a stronger grip on the ability to build a solid predictive model.

When used together, predictive analytics and data mining help marketing professionals anticipate and get ready for customer needs, rather than just reacting to them.

Source: https://www.promptcloud.com/blog/data-mining-and-predictive-analysis/

Tuesday, 7 April 2015

The Nasty Problem with Scraping Results from the Engines


One theme that I've been concerned with this week centers around data transparency in the search engine world. Search engines provide information that is critical to the business of optimizing and growing a business on the web, yet barriers to this data currently force many companies to use methods of data extraction that violate the search engines' terms of service.

Specifically, we're talking about two pieces of information that no large-scale, successful web operation should be without. These include rankings (the position of their site(s) vs. their competitors) for important keywords and link data (currently provided most accurately through Yahoo!, but also available through MSN and in lower quality formats from Google).

Why do marketers and businesses need this data so badly? First we'll look at rankings:

•    For large sites in particular, rankings across the board will go up or down based on their actions and the actions of their competition. Any serious company who fails to monitor tweaks to their site, public relations, press and optimization tactics in this way will lose out to competitors who do track this data and, thus, can make intelligent business decisions based on it.

•    Rankings provide a benchmark that helps companies estimate their global reach in the search results and make predictions about whether certain areas of extension or growth make logical sense. If a company must decide on how to expand their content or what new keywords to target or even if they can compete in new markets, the business intelligence that can be extracted from large swaths of ranking data is critical.

•    Rankings can be mapped directly to traffic, allowing companies to consider advertising, extending their reach or forming partnerships

And, on the link data side:

•    Temporal link information allows marketers to see what effects certain link building, public relations and press efforts have on a site's link profile. Although some of this data is available through referring links in analytics programs, many folks are much more interested in the links that search engines know about and count, which often includes many more than those that pass traffic (and also ignores/doesn't count some that do pass traffic).

•    Link data may provide references for reputation management or tracking of viral campaigns - again, items that analytics don't entirely encompass.

•    Competitive link data may be of critical importance to many marketers - this information can't be tracked any other way.

I admit it. SEOmoz is a search engine scraper - we do it for our free public tools, for our internal research and we've even considered doing it for clients (though I'm seriously concerned about charging for data that's obtained outside TOS). Many hundreds of large firms in the search space (including a few that are 10-20X our size) do it, too. Why? Because search engine APIs aren't accurate.

Let's look at each engine's abilities and data sources individually. Since we've got a few hundred thousand points of data (if not more) on each, we're in a good position to make calls about how these systems are working.

Google (all APIs listed here):

•    Search SOAP API - provides ranking results that are massively different from almost every datacenter. The information is often less than useless, it's actually harmful, since you'll get a false sense of what's happening with your positions.

•    AJAX Search API - This is really designed to be integrated with your website, and the results can be of good quality for that purpose, but it really doesn't serve the job of providing good stats reporting.

•    AdSense & AdWords APIs - In all honesty, we haven't played around with these, but the fact that neither will report the correct order of the ads, nor will they show more than 8 ads at a time tells me that if a marketer needed this type of data, the APIs wouldn't work.

Yahoo! (APIs listed here):

•    Search API - Provides ranking information that is a somewhat accurate map to Yahoo!'s actual rankings, but is occassionally so far off-base that they're not reliable. Our data points show a lot more congruity with Yahoo!'s than Google's, but not nearly enough when compared with scraped results to be valuable to marketers and businesses.

•    Site Explorer API - Shows excellent information as far as number of pages indexed on a site and the link data that Yahoo! knows about. We've been comparing this information with that from scraped Yahoo! search results (for queries like linkdomain: and site:) and those at the Site Explorer page and find that there's very little quality difference in the results returned, though the best estimate numbers can still be found through a last page search of results.

•    Search Marketing API - I haven't played with this one at all, so I'd love to hear comments from those who have.

MSN:

•    Doesn't mind scraping as long as you use the RSS results. We do, we love them and we commend MSN for giving them out - bravo! They've also got a web search SDK program, but we've yet to give it a whirl. The only problem is the MSN estimates, which are so far off as to be useless. The links themselves, though, are useful.

Ask.com

•    Though it's somewhat hidden, the XML.Teoma.com page allows for scraping of results and Ask doesn't seem to mind, though they haven't explicitly said anything. Again, bravo! - the results look solid, accurate and match up against the Ask.com queries. Now, if Ask would only provide links

I know a lot of you are probably asking:

•    "Rand, if scraping is working, why do you care about the search engines fixing the APIs?"

•    The straight answer is that scraping hurts the search engines, hurts their users and isn't the most practical way to get the data. Let me give you some examples:

•    Scraped queries have to look as much like real users as possible to avoid detection and banning - thus, they affect the query data that search engineers use to improve web search.

•    These queries also hit advertisers - falsifying the number of "real" impressions that advertisers see and lowering their CTRs unnaturally.

•    They take up search engine resources and though even the heaviest scraping barely impacts their server loads, it's still an annoyance.

•    With all these negative elements, and so many positive incentives to have the data, it's clear what's needed - a way for marketers/businesses to get the data they need without hurting the search engines. Here's how they can do it:

•    Provide the search ranking position of a site in the referral string - this works for ranking data, but not for link data and since Yahoo! (and Google) both send referrals through re-directs at times, it wouldn't be a hard piece to add.

•    Make the API's accurate, complete and unlimited

•    If the last option is too ambitious, the search engines could charge for API queries - anyone who needs the data would be more than happy to pay for it. This might help with quality control, too.

•    For link data - serve up accurate, wholistic data in programs like Google Sitemaps and Yahoo! Search Submit (or even, Google Analytics). Obviously, you'd only get information about your own site after verifying.

I've talked to lots of people at the search engine level about making changes this week (including Jeremy, Priyank, Matt, Adam, Aaron, Brett and more). I can only hope for the best...

Source: http://moz.com/blog/the-nasty-problem-with-scraping-results-from-the-engines